首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   116638篇
  免费   20090篇
  国内免费   11794篇
化学   79005篇
晶体学   1269篇
力学   8001篇
综合类   700篇
数学   13957篇
物理学   45590篇
  2024年   121篇
  2023年   2291篇
  2022年   2448篇
  2021年   3661篇
  2020年   4728篇
  2019年   4575篇
  2018年   3896篇
  2017年   3565篇
  2016年   5689篇
  2015年   5400篇
  2014年   6605篇
  2013年   8686篇
  2012年   10542篇
  2011年   11198篇
  2010年   7435篇
  2009年   7073篇
  2008年   7448篇
  2007年   6874篇
  2006年   6354篇
  2005年   5330篇
  2004年   4063篇
  2003年   3123篇
  2002年   2694篇
  2001年   2312篇
  2000年   2002篇
  1999年   2321篇
  1998年   2083篇
  1997年   1921篇
  1996年   2081篇
  1995年   1756篇
  1994年   1709篇
  1993年   1353篇
  1992年   1277篇
  1991年   1148篇
  1990年   927篇
  1989年   692篇
  1988年   536篇
  1987年   453篇
  1986年   431篇
  1985年   372篇
  1984年   275篇
  1983年   196篇
  1982年   173篇
  1981年   128篇
  1980年   90篇
  1979年   51篇
  1978年   36篇
  1976年   37篇
  1975年   39篇
  1974年   46篇
排序方式: 共有10000条查询结果,搜索用时 28 毫秒
991.
Electrode fouling and passivation is a substantial and inevitable limitation in electrochemical biosensing, and it is a great challenge to efficiently remove the contaminant without changing the surface structure and electrochemical performance. Herein, we propose a versatile and efficient strategy based on photocatalytic cleaning to construct renewable electrochemical sensors for cell analysis. This kind of sensor was fabricated by controllable assembly of reduced graphene oxide (RGO) and TiO2 to form a sandwiching RGO@TiO2 structure, followed by deposition of Au nanoparticles (NPs) onto the RGO shell. The Au NPs‐RGO composite shell provides high electrochemical performance. Meanwhile, the encapsulated TiO2 ensures an excellent photocatalytic cleaning property. Application of this renewable microsensor for detection of nitric oxide (NO) release from cells demonstrates the great potential of this strategy in electrode regeneration and biosensing.  相似文献   
992.
Selective oxidative cleavage of a C? C bond offers a straightforward method to functionalize organic skeletons. Reported herein is the oxidative C? C bond cleavage of ketone for C? N bond formation over a cuprous oxide catalyst with molecular oxygen as the oxidant. A wide range of ketones and amines are converted into cyclic imides with moderate to excellent yields. In‐depth studies show that both α‐C? H and β‐C? H bonds adjacent to the carbonyl groups are indispensable for the C? C bond cleavage. DFT calculations indicate the reaction is initiated with the oxidation of the α‐C? H bond. Amines lower the activation energy of the C? C bond cleavage, and thus promote the reaction. New insight into the C? C bond cleavage mechanism is presented.  相似文献   
993.
A single microbead‐based fluorescence imaging (SBFI) strategy that enables detection of protein kinase activity from single cell lysates is reported. We systematically investigated the ability of various rare earth (RE) ions, immobilized on the microbead, for specific capturing of kinase‐induced phosphopeptides, and Dy3+ was found to be the most prominent one. Through the efficient concentration of kinase‐induced fluorescent phosphopeptides on a Dy3+‐functionalized single microbead, kinase activity can be detected and quantified by reading the fluorescence on the microbead with a confocal fluorescence microscope. Owing to the extremely specific recognition of Dy3+ towards phosphopeptides and the highly‐concentrated fluorescence accumulation on only one microbead, ultrahigh sensitivity has been achieved for the SBFI strategy which allows direct kinase analysis at the single‐cell level.  相似文献   
994.
Limited strategies have been established to prepare monodisperse mesoporous carbon nanospheres (MCNs) with tailored pore sizes. In this work, a method is reported to synthesize MCNs by combining polymerization of aniline with co‐assembly of colloidal silica nanoparticles. The controlled self‐assembly behavior of colloidal silica enables the formation of uniform composite nanospheres and convenient modulation over mesopores. After carbonization and removal of sacrificial templates, the resultant MCNs possess tunable mesopores (7–42 nm) and spherical diameters (90–300 nm), as well as high surface area (785–1117 m2 g?1), large pore volume (1.46–2.01 cm3 g?1) and abundant nitrogen moieties (5.54–8.73 at %). When serving as metal‐free electrocatalysts for the oxygen reduction reaction (ORR), MCNs with an optimum pore size of 22 nm, compared to those with 7 and 42 nm, exhibit the best ORR performance in alkaline medium.  相似文献   
995.
New BN‐heterocyclic compounds have been found to undergo double arene photoelimination, forming rare yellow fluorescent BN‐pyrenes that contain two B? N units. Most significant is the discovery that the double arene elimination can also be driven by excitons generated electrically within electroluminescent (EL) devices, enabling the in situ solid‐state conversion of BN‐heterocycles to BN‐pyrenes and the use of BN‐pyrenes as emitters for EL devices. The in situ exciton‐driven elimination (EDE) phenomenon has also been observed for other BN‐heterocycles.  相似文献   
996.
Chemoselective hydrosilylation of functionalized alkenes is difficult to achieve using base‐metal catalysts. Reported herein is that well‐defined bis(amino)amide nickel pincer complexes are efficient catalysts for anti‐Markovnikov hydrosilylation of terminal alkenes with turnover frequencies of up to 83 000 per hour and turnover numbers of up to 10 000. Alkenes containing amino, ester, amido, ketone, and formyl groups are selectively hydrosilylated. A slight modification of reaction conditions allows tandem isomerization/hydrosilylation reactions of internal alkenes using these nickel catalysts.  相似文献   
997.
Ternary core–shell heterostructured rutile@anatase@CrxOy nanorod arrays were elaborately designed as photoanodes for efficient photoelectrochemical water splitting under visible‐light illumination. The four‐fold enhanced and stabilized visible‐light photocurrent highlights the unique role of the interim anatase layer in accelerating the interfacial charge transfer from the CrxOy chromophore to rutile nanorods.  相似文献   
998.
A homogeneous solution of a low‐molecular‐weight liquid crystal and a polymer spontaneously phase separates during airbrushing to form uniform fibers with a fluid liquid‐crystal core surrounded by a solid polymer sheath. This structure forms because it effectively minimizes the interfacial energy of the phase‐separated components while minimizing the elastic energy of the liquid‐crystal core. These fibers incorporate the sensitive stimuli response of liquid crystals while maintaining the structural integrity, flexibility, and large surface‐area‐to‐volume ratios inherent in fibers. We demonstrate the electro‐ and thermo‐optical response of the resulting fibers. They may find use as biological and chemical sensors. The resulting fibers have the potential to shape the future of flexible/wearable electronics and sensors.  相似文献   
999.
We report a simple and environment friendly method to fabricate superhydrophobic metallic mesh surfaces for oil/water separation. The obtained mesh surface exhibits superhydrophobicity and superoleophilicity after it was dried in an oven at 200 °C for 10 min. A rough silver layer is formed on the mesh surface after immersion, and the spontaneous adsorption of airborne carbon contaminants on the silver surface lower the surface free energy of the mesh. No low‐surface‐energy reagents and/or volatile organic solvents are used. In addition, we demonstrate that by using the mesh box, oils can be separated and collected from the surface of water repeatedly, and that high separation efficiencies of larger than 92 % are retained for various oils. Moreover, the superhydrophobic mesh also possesses excellent corrosion resistance and thermal stability. Hence, these superhydrophobic meshes might be good candidates for the practical separation of oil from the surface of water.  相似文献   
1000.
The mechanism of depolymerization is one of the most essential issues in chemical engineering and materials science. In this work, we investigate the depolymerization reactions of three typical free‐radical poly(alpha‐methylstyrene) tetramers by using first‐principles density functional theory. The calculated results show that these reactions all need to overcome the energy barriers in the range of 0.58 to 0.77 eV, and that breaking the C?C bond at the chain end leads to the dissociation of alpha‐methylstyrene monomers from the polymers. Electronic‐structure analysis indicates that the reactions occur easily at the CR3 unsaturated end, and that the frontier molecular orbitals that participate in the reactions are mainly localized at the unsaturated ends. Meanwhile, spin population analysis presents the unique net spin‐transfer process in free‐radical depolymerization reactions. We hope the current findings can contribute to understanding the free‐radical depolymerization mechanism and help guide future experiments.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号